direct product, abelian, monomial, 2-elementary
Aliases: C22×C18, SmallGroup(72,18)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C22×C18 |
C1 — C22×C18 |
C1 — C22×C18 |
Generators and relations for C22×C18
G = < a,b,c | a2=b2=c18=1, ab=ba, ac=ca, bc=cb >
(1 45)(2 46)(3 47)(4 48)(5 49)(6 50)(7 51)(8 52)(9 53)(10 54)(11 37)(12 38)(13 39)(14 40)(15 41)(16 42)(17 43)(18 44)(19 55)(20 56)(21 57)(22 58)(23 59)(24 60)(25 61)(26 62)(27 63)(28 64)(29 65)(30 66)(31 67)(32 68)(33 69)(34 70)(35 71)(36 72)
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 33)(8 34)(9 35)(10 36)(11 19)(12 20)(13 21)(14 22)(15 23)(16 24)(17 25)(18 26)(37 55)(38 56)(39 57)(40 58)(41 59)(42 60)(43 61)(44 62)(45 63)(46 64)(47 65)(48 66)(49 67)(50 68)(51 69)(52 70)(53 71)(54 72)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
G:=sub<Sym(72)| (1,45)(2,46)(3,47)(4,48)(5,49)(6,50)(7,51)(8,52)(9,53)(10,54)(11,37)(12,38)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,55)(20,56)(21,57)(22,58)(23,59)(24,60)(25,61)(26,62)(27,63)(28,64)(29,65)(30,66)(31,67)(32,68)(33,69)(34,70)(35,71)(36,72), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(17,25)(18,26)(37,55)(38,56)(39,57)(40,58)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)>;
G:=Group( (1,45)(2,46)(3,47)(4,48)(5,49)(6,50)(7,51)(8,52)(9,53)(10,54)(11,37)(12,38)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,55)(20,56)(21,57)(22,58)(23,59)(24,60)(25,61)(26,62)(27,63)(28,64)(29,65)(30,66)(31,67)(32,68)(33,69)(34,70)(35,71)(36,72), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(17,25)(18,26)(37,55)(38,56)(39,57)(40,58)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72) );
G=PermutationGroup([[(1,45),(2,46),(3,47),(4,48),(5,49),(6,50),(7,51),(8,52),(9,53),(10,54),(11,37),(12,38),(13,39),(14,40),(15,41),(16,42),(17,43),(18,44),(19,55),(20,56),(21,57),(22,58),(23,59),(24,60),(25,61),(26,62),(27,63),(28,64),(29,65),(30,66),(31,67),(32,68),(33,69),(34,70),(35,71),(36,72)], [(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,33),(8,34),(9,35),(10,36),(11,19),(12,20),(13,21),(14,22),(15,23),(16,24),(17,25),(18,26),(37,55),(38,56),(39,57),(40,58),(41,59),(42,60),(43,61),(44,62),(45,63),(46,64),(47,65),(48,66),(49,67),(50,68),(51,69),(52,70),(53,71),(54,72)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)]])
C22×C18 is a maximal subgroup of
C18.D4
72 conjugacy classes
class | 1 | 2A | ··· | 2G | 3A | 3B | 6A | ··· | 6N | 9A | ··· | 9F | 18A | ··· | 18AP |
order | 1 | 2 | ··· | 2 | 3 | 3 | 6 | ··· | 6 | 9 | ··· | 9 | 18 | ··· | 18 |
size | 1 | 1 | ··· | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
72 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | + | ||||
image | C1 | C2 | C3 | C6 | C9 | C18 |
kernel | C22×C18 | C2×C18 | C22×C6 | C2×C6 | C23 | C22 |
# reps | 1 | 7 | 2 | 14 | 6 | 42 |
Matrix representation of C22×C18 ►in GL3(𝔽19) generated by
1 | 0 | 0 |
0 | 18 | 0 |
0 | 0 | 1 |
18 | 0 | 0 |
0 | 18 | 0 |
0 | 0 | 18 |
3 | 0 | 0 |
0 | 2 | 0 |
0 | 0 | 17 |
G:=sub<GL(3,GF(19))| [1,0,0,0,18,0,0,0,1],[18,0,0,0,18,0,0,0,18],[3,0,0,0,2,0,0,0,17] >;
C22×C18 in GAP, Magma, Sage, TeX
C_2^2\times C_{18}
% in TeX
G:=Group("C2^2xC18");
// GroupNames label
G:=SmallGroup(72,18);
// by ID
G=gap.SmallGroup(72,18);
# by ID
G:=PCGroup([5,-2,-2,-2,-3,-3,78]);
// Polycyclic
G:=Group<a,b,c|a^2=b^2=c^18=1,a*b=b*a,a*c=c*a,b*c=c*b>;
// generators/relations
Export